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The accuracy of numerical boundary conditions for the linearized one-dimensional shallow 
water equations is determined by extending the dispersion (Fourier) analysis originally 
presented by C. K. Chu and A. Sereny (J. Comput. Phys. 15, 476 (1974)). Accuracy is 
measured by calculating steady state amplitudes of incoming and outgoing numerical waves at 
a boundary as functions of a forcing frequency. Radiating, closed, and forced/radiating boun- 
dary conditions are studied in combination with two numerical schemes: the Richardson- 
Sielecki explicit finite difference scheme and the Galerkin finite element method with piecewise 
linear basis functions and Crank-Nicolson time-stepping. Contamination of the linite element 
solution with short waves is seen to vary with the choice of extraneous boundary conditions. 
An example of L. N. Trefethen’s (J. Comput. Phys. 49, 199 (1983)) interpretation of the 
B. Gustafsson, H. Kreiss, and A. Sundstrom (Math. Comput. 26, 649 (1972)) instability is also 
given for the finite element method. (r: 1986 Academic press, IIIC 

INTRODUCTION 

It is well known that the implementation of boundary conditions for the 
numerical solution of hyperbolic partial differential equations (PDEs) can affect 
both accuracy and stability. Boundary conditions may introduce instabilities to a 
numerical method which is stable on a periodic domain {i.e., Cauchy stable). They 
may also affect the accuracy of a stable solution directly, by generating inaccurate 
reflections, and indirecly, by generating undesirable short waves which contaminate 
the solution. Consequently, numerical methods which are both accurate and stable 
for the Cauchy problem may be less attractive when combined with inappropriate 
boundary conditions. In this study, it is shown that the dispersion (Fourier) 
analyses which are commonly used to measure accuracy for the Cauchy problem 
can be extended to study the accuracy of forced initial boundary value problems. 

The accuracy of boundary conditions is often determined by examining trun- 
cation errors. Gustafsson [4] showed that boundary and initial approximations 
may be one order of accuracy lower than the interior approximations without 
decreasing the overall accuracy. Skiillermo [S, 63 extended this result by developing 
a technique for the total error analysis of a finite difference scheme, taking into 
account initial approximations, boundary conditions, and the interior 
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approximation. Since a small truncation error constant may, for some waves, make 
a boundary scheme competitive which is formally not of the right order, she studied 
boundary condition accuracy indirectly. In particular, she measured the number of 
meshpoints per wavelength that are needed to compute each Fourier component of 
the solution to some preassigned relative accuracy. Both Sloan [7] and Gottlieb 
and Turkel [8] have used Skiillermo’s analysis to compare numerical boundary 
conditions. However, Gottlieb and Turkel found that the approach was useful only 
for eliminating the least accurate conditions. 

In this study, accuracy is measured by calculating steady state amplitudes of 
incoming and outgoing waves at a boundary as continuous functions of a forcing 
frequency. This approach extends the reflection analysis presented by Chu and 
Sereny Cl] and is closely related to the recent work of Trefethen [2, 9-111, 
Halpern [ 121, and Higdon [ 131. Chu and Sereny calculated reflection coefficients 
at the one discrete time At for three extraneous boundary conditions when used in 
combination with a solid wall condition and a two-step Lax-Wendroff scheme. 
Trefethen used reflection equations and reflection matrices (which become reflection 
coefficients in the 1 x 1 case) to interpret the numerous instabilities that arise with 
difference models of linear one-dimensional hyperbolic PDEs with one or two 
boundaries or interfaces. (An example of such an instability is given in Section 5.) 
Reflection coefficients were also used by Halpern to obtain error estimates of the 
reflected energy arising from absorbing boundary conditions for discretizations of 
the one-dimensional wave equation, and by Higdon to construct absorbing boun- 
dary conditions for the standard second-order centered difference approximation to 
the two-dimensional wave equation, 

The following accuracy analysis is applied to the one-dimensional linearized 
shallow water equations with constant depth and two boundaries. Two particular 
problems are studied. In problem Pl, periodic forcing is applied at one end of the 
channel and a radiation condition is imposed at the other. In problem P2, one end 
of the channel is closed while the other end simultaneously specifies an incoming 
wave and radiates all outgoing waves. Boundaries such as these are common in 
tidal and storm surge models. For both problems, only the steady state solution is 
considered. However, unlike Rudy and Strikwerda [14], who evaluated boundary 
conditions for both their effect on the accuracy of the solution and the rate of con- 
vergence to steady state, in this study boundary conditions are only considered for 
their accuracy. 

Many mathematical expressions have been developed for radiating or absorbing 
boundary conditions (e.g., [ 15-171). This study does not examine these expressions 
per se. Rather, it concentrates on the numerical implementation of a specific 
radiation condition that is exact for the frictionless shallow water equations. In par- 
ticular, several implementations of this condition are studied in combination with 
two numerical schemes for the channel interior. 

The first scheme is an explicit finite difference method whose two-dimensional 
extension, often referred to as the Richardson-Sielecki (RS) scheme, is commonly 
used in tidal and storm surge models (e.g., [18, 191). Spatial and temporal 
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staggering of the variables for this scheme mean that many implementations of the 
radiation of forced/radiation condition are possible. In Section 3, the relative 
accuracy of four implementations is determined and the Orlanski [20] radiation 
condition is briefly discussed. 

The second scheme, henceforth referred to as FEMl, is a Galerkin finite element 
method which combines piecewise linear basis functions and Crank-Nicolson time- 
stepping. Coincident variables for this scheme mean that the physical boundary 
conditions have obvious numerical implementations. However, additional boun- 
dary conditions are required in order to fully specify the numerical problem. It is 
well known (e.g., [21, 81) that these additional conditions can affect both the 
accuracy and stability of the numerical solution. With FEMl, the accuracy effects 
are twofold. Not only can the physical properties of a boundary be modelled 
inaccurately, but the solution can be severely contaminated with short waves. 
Platzman [22], Walters and Carey [23], and Walters [24] have discussed the 
generation of these waves in conjunction with closed or forced boundaries. In this 
study, it is shown that short wave contamination also arises with radiating boun- 
daries and varies with the choice of additional boundary conditions. In Section 4, 
four pairs of additional conditions are examined to determine which pair most 
accurately represents the boundary physics and which pair is most successful in 
minimizing the generation of short waves. 

As discussed by Gustafsson [25], it is important to differentiate between stability 
and convergence to a steady state solution. Stability, both in the Lax-Richtmyer 
and GKS sense (Gustafsson, Kriess, and Sundstrom [3]), together with con- 
sistency ensures that the solution of a time-dependent difference model converges, 
as the mesh size approaches zero, to the correct solution of the differential equation 
at each fixed time t. Hence a stable difference model may admit solutions that grow 
in time provided this growth does not get worse as the mesh is relined. On the other 
hand, a model which reaches a steady state solution must not admit any growing 
solutions. However, this does not mean that such a model is stable. Gustafsson 
[25] gives an example of numerical method which would be expected to produce a 
steady state solution, yet is GKS unstable. In order to provide a more restrictive 
stability definition, he also presents sufficient conditions such that a GKS stable 
method, when written in the form 

V 
nil- 

- Qv" 

for some difference operator Q, has all the eigenvalues of Q inside the unit circle. 
This condition guarantees convergence to a steady state and is stronger than P- 
stability (Yee, Beam, and Warming [26]), which requires GKS stability and no 
eigenvalues outside the unit circle. 

In the subsequent analysis, it is only assumed that the eigenvalues of Q are inside 
the unit circle. Stability is not essential for the analysis, though there is little point 
in determining boundary condition accuracy if the associated method is unstable. 
Consequently, this analysis complements Gustafsson’s work in the particular case of 
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the shallow water equations. Given several numerical boundary conditions which 
satisfy the Gustafsson conditions, the following approach can determine their 
relative accuracy. 

1. BOUNDARY CONDITIONSFOR THE SHALLOW WATER EQUATIONS 

Assuming constant depth and linear friction, the one-dimensional linearized 
shallow water equations can be expressed in matrix form as 

;=Q,g+Q2w 

where 

Q,=(Tg ,"), Qz=(; "3 

Z 
w= 

0 U 

(l.la) 

(l.lb) 

(1.k) 

and 

z(x, t) = elevation above mean sea level, 

u(x, t) = velocity, 

h = depth, 

g = gravity, 

z = coefficient of linear bottom friction. 

These equations are to be solved on the interval x E [0, 1 ] for t > 0. Initial con- 
ditions are 

w(x, 0) = f(x) (l.ld) 

for some function f. 
Since the eigenvalues of Ql are + (gh)‘/*, exactly one boundary condition should 

be specified at each end of the channel [27]. It will be assumed that the left boun- 
dary is either closed or radiating and the right boundary is either forced or for- 
ced/radiating. 

Closed and radiating boundaries will be represented as 

u(0, 2) = 0 (1.2) 
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u(0, t) = - f 
0 

112 
do, t) (1.3) 

respectively. Equation (1.3) is the precise relationship (when z =0) between 
elevation and velocity for a leftward travelling wave [28]. It ensures no reflection at 
the left boundary by setting the incoming characteristic variable to zero. 

The pure driving condition at the right boundary will have the form 

u(1, t)=F(t) (1.4) 

for some function F(t). The driving/radiation condition will have the form 

U(1, t)= ; 0 
I/2 

41, t) +W(t)), 

where f is some function and F(t) now specifies only the inward component of the 
solution at the right boundary. The combined condition is designed to generate 
leftward waves and radiate rightward waves. 

When reexpressed in terms of characteristic variables, all these boundary con- 
ditions have the form required by Kreiss [27]. 

2. DEVELOPMENT OF THE ANALYSIS 

The following boundary condition analysis is based on separability of the spatial 
and temporal components of the steady state numerical solution. In this section, 
sufficient conditions for separability are found and the analysis approach is out- 
lined. 

Assume that the shallow water equations (1.1) and a pair of well-posed boundary 
conditions are solved with a finite difference or finite element method. The complete 
set of difference equations and numerical boundary conditions can be expressed in 
matrix form as 

AX ““=BX”+X,F(n+l). (2.la) 

A and B are matrices defining the difference operations and numerical boundary 
conditions, X is the vector of discretized variables, and X, is the vector which 
locates the forced variable at the right boundary. A is nonsingular. The forcing 
function is assumed to be 

F(n) = Re[a$nco“-~)] (2.lb) 

where 0 <o At < 7~ and a > 0. w, a, and 4 are referred to as the frequency, 
amplitude, and phase, respectively. 
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Repeated substitution into (2.la) gives 

X n+l+p~)“+lXO 

+ Re aei[(n+l)wdt-rp] f ei(/--n)odr(A-lB 

I=0 
) .%] (2.2) 

where X0 is the vector of initial conditions. But 

( t &-+ya-‘B)“-‘) c=~-(e-iwAIA-lB)n+l 
I=0 

(2.3a) 

where 

C= [Z-e-iwA’(A-lB)]. (2.3b) 

So when C is invertible, (2.3a) can be written as 

(2.4) 

Under what conditions is C invertible? Assume that C is singular. Then for some 
vector x # 0, 

cx=o. (2.5) 

This implies 

and 

Bx=e lodr~~ (2.6a) 

l(0.1 At) = eicoAr (2.6b) 

is an eigenvalue of the matrix A -‘B. Therefore, provided I is not an eigenvalue of 
A - ‘B, C is invertible. 

When the driving frequency and time step are chosen so that n(w dt) is not an 
eigenvalue of A-‘B, (2.2) can be rewritten as 

X nfl = (A-‘B)“+‘X’+ Re{ae iC(n+ l)oA~--gil(~- (e-iwAr,,g -IB)~+ l)y> (2.7) 

where 

Y = C-‘A-lx,. (2.8) 

X ‘+’ converges to a steady state when (A-lB)n+l converges. Conditions for this 
are as follows. 
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THEOREM [29]. lim, _ UC (A _ ‘B)’ = L (a constant matrix) if and only if 

(i) 11) 6 1 for all eigenvalues of A ~ ‘II, 
(ii) if ld( = 1 then A= 1, 
(iii) the Jordan block associated with each eigenvalue I. = 1 has dimension 1 x 1. 

THEOREM [ 291. lim, _ 5c (A - lB)n = 0 if and only if )A) < 1 for all eigenualues of 
A-‘B. 

The steady state solution for X nf I is complicated when A-‘B has at least one 
eigenvalue equal to unity. However, if it is assumed that all eigenvalues are strictly 
inside the unit circle (as would follow from Gustafsson’s conditions [ZS]), then 

X n + 1 = ReCae’[‘” + 1 )wAf 6ly-j (2.9) 

is the steady state solution. Notice that its spatial and temporal components are 
separable. The spatial profile of the steady state solution is contained in the vector 
Y and the temporal component has the same frequency as the forcing function. 

The precise form of Y can be found by extending conventional dispersion 
(Fourier) analyses for the Cauchy problem. Assume the separable steady state 
solution has the form 

(2.10) 

where 

A= eiwAr (2.11) 

and K is a complex number. (This same substitution is made in the normal mode 
stability analysis [3, 30, 23 to form the resolvent equations.) For (2.10) to be a non- 
trivial solution of the interior difference equations, a characteristic equation must be 
satisfied. This equation is a polynomial in J. and K. Assume that in terms of K, the 
polynomial has order m. Then for a specific value of I there are m roots, K i ,..., K,. 

If each root has multiplicity one, the general numerical solution is 

(2.12) 

for some complex coeflicients [, ,..., [,, p, ,..., ,um. In the case of multiple roots, the 
general solution is given by Trefethen [2, Eq. (2.7)]. Precise values for these coef- 
ficients are calculated by solving a system of equations determined by the boundary 
conditions and the interior difference equations. 

As described in [2, lo], each term in (2.12) can be identified with a wave whose 
direction is determined by its group velocity. When the group velocity is nonzero, 
these waves are either incoming or outgoing at a boundary. Consequently, once 
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(2.12) is fully determined and the wave directions are identified, reflection charac- 
teristics can be calculated for each boundary and the accuracy of the boundary con- 
ditions can be assessed as a function of the driving o At. The following two sections 
illustrate the procedure in more detail. 

3. THE RICHARDSON~SIELECKI SCHEME 

Many numerical methods for solving the one-dimensional shallow water 
equations (such as FEMl) have their elevation and velocity variables located at the 
same spatial point. Since only one physical condition must be specified at each 
boundary, two additional conditions are required by such methods in order to fully 
specify the numerical problem. Methods such as the RS scheme stagger z and u 
spatially (see Fig. 1). Only one variable is then located at each boundary and the 
need for extra conditions is avoided. However, spatial staggering also means that 
(1.3) and (1.5) must be implemented with some type of extrapolation. The par- 
ticular choice can affect both accuracy and stability. In this section, four implemen- 
tations that produce steady state solutions are examined for their relative accuracy. 
Orlanski’s [20] radiation condition is also briefly discussed. 

In the domain interior, the RS equations are 

(3.la) 

! I, 
n + V2 ” + 32 I, 

zI =2 
” + “/2 

ZN 

* 
A Tn+l I, 

"I 
“+I 

“2 
n+l 

“N 
ntl 

“N+I 

I ;’ Id 

“r 
P II ,. 

“Z “F.l 

k--*x--i I 

“ii+, 

I 

FIG. 1. One-dimensional RS grid. 
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Initial conditions are assumed to be 

q= glm (3.lc) 

‘?!‘2 = g*(j) I (3.ld) 

for some functions g, and g,. The RS scheme is Cauchy stable [31] when 

(3.2) 

fi is commonly referred to as the Courant number. 
Closed and driving boundaries are easily implemented with the RS scheme. 

and 

u”=O I (3.3aj 

U”N+I=F(n) (3.3b) 

respectively simulate a closed left boundary and a driving right boundary. However, 
temporal and spatial staggering of z and u give rise to many implementations of the 
radiation condition (1.3). For problem Pl, four implementations will be studied in 
combination with the driving condition (3.3b). 

The first implementation 

is commonly employed with the RS scheme [lS]. It uses zeroth-order space-time 
extrapolation 

Zli2 
,I + I = z” + 112 I (3.4b) 

to calculate the z value coincident with UT + ‘. The second and third implementations 
are higher-order versions of (3.4a). They are first-order space-time extrapolation 

and second-order space-time extrapolation 

g n+l=- _ UI 0 
112 

h (32 ;+l/2+Z;~1/2)-3U;. (3.6) 

The fourth implementation combines linear spatial extrapolation with phase 
velocity. Its development is illustrated in Fig. 2. Assume that the numerical wave 



ANALYSIS OF BOUNDARY CONDITIONS 343 

FIG. 2. Schematic for boundary condition (3.7) 

has the phase speed C*. Then in the time &At, elevation z;+ ‘I2 travels ‘C* At and is 2 

coincident with u; + ‘. Setting 

r=$(l -C* At/Ax), (3.7a) 

linear extrapolation for z:+ I’* gives 

z”*+ l/2 = (1 + r) z; + l/2 - rz; + 112. (3.7b) 

The radiation condition is then simply a refinement of (3.4a) to 

(3.7c) 

The analysis in Section 2 is easily applied to the RS scheme. Define the vector X 
as 

X n+l- - (UT + 1, zl + 1’2, u; + *, z; + “2 )...) z;+ “2, u”Nf+l, ). (3.8) 

Then Eqs. (3.1), (3.3b), and one of either (3.4a), (3.5), (3.6), or (3.7) can be 
expressed in the form (2.la) with matrix A = Z, the identity matrix. For fixed values 
of N, f2, and 

TAX 
.f-l = (&+)I/2 

assume that all the eigenvalues of B have been shown (either numerically or with 
Gustafsson’s conditions) to lie inside the unit circle. Then the steady state numerical 
solution has the separable form (2.9). In particular, assume 

(3.10a) 

(3.10b) 
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with 1 defined by (2.11). A nontrivial solution for (3. la) and (3.1 b) requires that the 
characteristic equation 

rc2-2Kjl +$[A-2+ l//I+$fJ*(;l- l/n)]/f;f + 1 =o (3.11) 

be satisfied. For a specific value of I. there are two roots, ICY and rc2, whose product 
is 1. Assuming K, # uz, these roots are designated as follows: 

(i) when both roots are real, K~ has the larger magnitude, i.e., 

IK21 =I-> 1 >f= lK,l, (3.12a) 

(ii) otherwise, ICY has positive argument, i.e., 

K2 z r&Ax, (3.12b) 

where r > 0 and 0 < k2 Ax < n. The general numerical solution is then 

,y + l/2 _ ,$n + 1/2)oAr 
I - 

[rlr~je~“klAr+r2r~eijkzAx] (3.13a) 

U/n+l=,r(n+l)oAr[plY -(j-l/Z) f -i(j-- l/Z)k>Ax 
+p2r 

/-l/2 e’” UWzAx] (3.13b) 

for some complex coefficients il, i2, pl, and p2. 
This solution may be interpreted (see [2]) as two waves with spatially varying 

amplitude profiles. The first wave has wavenumber k, and propagates rightward as 
n increases. When r > 1, its amplitude decreases with propagation. The second wave 
has wavenumber -k, and propagates leftward. When r > 1, its amplitude also 
decreases with propagation. The propagation speed of each wave is called its phase 
velocity, C. However, in studying wave reflections, leftward and rightward waves 
should be defined in terms of their group velocity G, rather than their phase 
velocity, since G is approximately the speed of energy propagation (e.g., see 
Lemma 5.1 in [lo]). Leftward and rightward waves are therefore defined to have 
G < 0 and G > 0, respectively. This definition is consistent with Trefethen [2, lo]. 

8. A 

k,Axh wat/lr 

FIG. 3. Amplitude and phase of ICY for f, = 0.0 and fi = 0.95. Solid line, RS scheme; dashed line, 
analytic solution. 
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Figure 3 shows the amplitude and phase of ICY as a function of the driving fre- 
quency o At when fi = 0.0 andf, = 0.95. The diagram on the right plots IIC~( versus 
w At and indicates how wave amplitudes change with propagation. The diagram on 
the left is referred to as a dispersion curve. Nondimensional phase and group speeds 
are calculated as 

C COAt -= -- 
(gh)1’2 f,kAx 

and 
G 1 a(o At) 

-= -fid(kdx)’ ( gh)“2 

(3.14a) 

(3.14b) 

where in this case k = k2. For small frequencies, both speeds are close to their 
analytic values of - 1.0. Notice that when 0 <k, Ax < rc, C and G have the same 
sign. This is true for all values of (fi, fJ and means that when rc2 and ~~ are 
defined by (3.12b), they are associated with waves whose group velocities are 
leftward and rightward, respectively. Equation (3.12a) only arises when f, = 0 and 
both roots are negative. With reference to Table II in [lo], the solutions associated 
with rc2 and rci are still referred to as leftgoing and rightgoing, respectively. 

In Fig. 3, notice that 2Ax waves (k2 Ax = n) arise when u At is larger than the 
cutoff value, wc, of 2.5. Such waves are similar to the 4Ax waves that Vichnevetsky 
[32] predicts for an unstaggered finite difference gird. x2 amplitudes are seen to 
increase dramatically when o At > 0,. This means that the amplitude profile due to 
x2 decreases away from the right boundary, while the profile due to K, increases. 
Usually c2 is much larger that [, and the resultant 2Ax wave has an amplitude 
profile that decreases to the left. Vichnevetsky [32] observes that the amplitude of 
these evanescent waves decays in space at a rate which increases monotonically with 
the excess of frequency above the cutoff. 

Reflection coefficients are calculated from the amplitudes of the leftward and 
rightward waves at the boundaries. At time step n, the leftward and rightward ZJ 
waves at the left boundary are given by ,u~L~K~" and plAn~p1'2, respectively, where 
K is now used in place of the ICY defined by (3.12). For any left boundary condition, 
the reflection coefficient for u is therefore 

(3.15) 

At the right boundary, the leftward and rightward u waves are given by ~2~n~N+ ‘I2 
and p, ~"K-(~+~'*), respectively. Imposing boundary condition (3.3b) and assuming 
that F(n) has the form (2.lb), the reflected portion of the leftward wave is 
2yCLZKN+ l/2 _ ae-i4 ) and the reflection coefficient for the right boundary is 

(3.16) 
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But (3.3b) implies RI(= -1.0, regardless of the value of N. So (3.3b) is a perfect 
reflector of outgoing waves. 

The reflection coefficient for radiation condition (3.4a) is calculated as follows. 
Substituting (3.13) into (3.4a) yield 

0 
112 

~“1’2(~L1K-1’2+CL2)C.1’2)+ f (~lK-‘+[2K)=0. 
Making the same substitution in the continuity equation (3.la) for j= 1, N implies 

and 

Substituting these values into (3.17) then yields 

(3.18) 

(3.19) 

(3.20) 

Notice that this result is independent of the right boundary condition and N, the 
number of grid points. 

Reflection coefficients for boundary conditions (3.5) (3.6), and (3.7~) with 
C* At/Ax =f2 are calculated similarly. They are 

RL= -{I +;-2f2 (%)}/{I +&f2 ($3 (3.21) 

RL= -{l+$-fz(~)(3+;)]‘il+&$$)(3+$j, (3.22) 

and 

(3.23) 

respectively. 
Reflection coefficients whose absolute value is zero denote an outgoing wave that 

is transmitted through the boundary without any reflection. In such cases the 
associated radiation condition is exact. The relative accuracy of boundary con- 
ditions (3.4a), (3.5), (3.6) and (3.7) can therefore be measured by examining the 
magnitude of their reflection coefficients. In general, these magnitudes vary with 
fi,f2, and 0 At. 
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J------ 1 .oo 0.25 0.50 0.75 1 .oo 

wAth 

FIG. 4. Reflection coefficient amplitudes for the RS scheme with fr = 0.0, f2 = 0.95, and left boundary 
conditions calculated using: short dashed line, constant space-time extrapolation (3.4a); long dashed 
line, linear space-time extrapolation (3.5); solid line, quadratic space-time extrapolation (3.5); long-short 
dashed line, linear spatial extrapolation (3.7) with C*At/Ax = f2. 

Figure 4 plots the reflection coefficient amplitudes arising from (3.20), (3.21), 
(3.22), and (3.23). Long waves have coefficient amplitudes that are very close to 
zero. This means that they are almost completely absorbed by the boundary. These 
amplitudes increase with o dt, indicating less absorption (or greater reflection) as 
the wavelength decreases. Reflection coefficients also increase beyong the cutoff 
frequency and have amplitudes larger than 1. This means that the reflected wave is 
larger than the incident wave. Such behaviour could conceivably cause instability if 
the reflected wave did not decrease in amplitude as it moved away from the 
boundary. 

As would be expected, higher orders of space-time extrapolation produce more 

-I 
7.0 0.25 0.50 0.75 1 .oo 

v/At/r 

FIG. 5. Reflection coefficient amplitudes for the RS scheme with f, = 0.05 and fi = 0.95. Notation as 
in Fig. 4. 
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accurate implementations of radiation condition (1.3). Linear spatial extrapolation 
coupled with phase velocity is seen to be more accurate than constant space-time 
extrapolation, but not as accurate as linear space-time extrapolation. 

When t # 0, the reflection coefficients change dramatically. Figure 5 is similar to 
Fig. 4 but has fi = 0.05. In all cases, the left boundary condition is no longer most 
effective with long waves. This is to be expected since when r > 0, the elevation and 
velocity of a travelling wave are no longer in phase [28]. Consequently, a boun- 
dary condition such as (1.3) which specifies a one-point scalar relationship between 
z and u cannot be expected to effectively absorb waves at the boundary. 

In order to obtain more accurate boundary conditions in the presence of friction, 
(1.3) should either be refined or replaced with another radiation condition. Ver- 
boom and Slob [33] suggest refinements which are constructed to be most accurate 
for particular values of the parameter r/o. Unfortunately, they also report 
instabilities with some implementations. 

The radiation condition presented by Orlanski [20] is a promising alternative to 
(1.3). It is a two-stage process whereby a discretized version of the Sommerfeld 
radiation condition is first used to estimate the phase speed near a radiating boun- 
dary at time step n. This estimate is then inserted in a consistent discretization to 
calculate boundary values at time step n + 1. Although the resulting condition is 
nonlinear and cannot be analyzed with the previous approach, it is easily verified 
that the condition does not reflect any wave solutions of the form (3.10) even when 
r # 0. Unfortunately, stability constraints require that the phase speed estimates 
must be bounded. When an estimate exceeds the bound, Orlanski resets the 
estimate to the limiting value. With this refinement, perfect radiation is no longer 
guaranteed, and indeed does not seem to occur for travelling waves. Orlanski’s 
boundary condition was included in the model tests whose results are summarized 
in Table I. Although it is more accurate than the four implementations of (1.3) 
when fi = 0.05, f2 = 0.95, N = 10, and o At = 0.76183622, there is a reflected wave. 
Camerlengo and O’Brien [34] present a variation of Orlanski’s condition wherein 
the phase speed is not estimated but set to the constant Ax/At. The resulting con- 
dition may be viewed as a variation of (3.7). 

Problem P2 combines numerical implementations of the driving/radiation con- 
dition (1.5) with the numerical closed boundary condition (3.3a). Implementations 
of the driving/radiation condition are derived by writing unNf+‘, and z;+ ‘/* in terms 
of their leftward and rightward components 

UN+1 
n+l =p+I 

L +u”R+I 

z”N” 112 = z”,+ 112 + z”,+ 112, 
(3.24) 

The first implementation assumes constant space-time extrapolation for the 
rightward components 

n+l= 
UR 
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and (3.19) for the leftward components. The condition is 

g 
0 

l/2 ?Z+1 UN+]- - h (3.26) 

In practice, the real part of the right side of (3.26) is the driving condition. The 
complex multiplier for UC+ l therefore has the effect of changing the amplitude and 
phase of the original forcing function. 

The second implementation combines (3.19) with linear space-time extrapolation 
of the outgoing wave components. In this case, the driving/radiation condition 
becomes 

u”,+,‘,+u”,-2 ; 0 
w 

.y f t/2 
N 

=L4 ($$)}+u; {1 +(G)}. (3.27) 

The third implementation calculates the outgoing wave components by combin- 
ing linear extrapolation in time with a phase speed estimate. Assuming the 
numerical phase speed C* and setting 

Ax 
r=C*dt’ (3.28a) 

this driving/radiation condition is 

(3.28b) 

Right boundary reflection coefficients for P2 are calculated similarly to those for 
the left boundary in PI. Those arising from (3.26) and (3.27) are equal to (3.20) 
and (3.21), respectively. Consequently, they too are independent of N and the boun- 
dary condition at the other end of the channel. The reflection coeflicient arising 
from (3.28b) is also independent of N. However, it is not identical to (3.23) because 
the latter used spatial rather than temporal extrapolation. However, with fi = 0.95, 
fi = 0.0, and r = f; ‘, the two coeflkients are very close. 

When (3.19) is not used in the derivation of the preceding conditions, reflection 
coefficient magnitudes can become higher. For example, when 

q+ 10 = -(h/g)‘12u; (3.29) 

is assumed instead of (3.19), a reflection coefficient that is dependent on N arises. 
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With fi = 0.0, f2 = 0.95, and N = 10, the amplitude of the resultant reflection coef- 
ficient oscillates around the curve arising from (3.20) in Fig. 4. 

The preceding analysis results were partially confirmed with numerical model 
tests. Both problems Pl and P2 were tested with all the preceding boundary con- 
ditions, N = 10, and the driving frequency o At = 0.76183622. Parameter values for 
the model runs were identical to those in the analysis, and the model computations 
were done in double precision on a SPERRY 1100/60. Each run lasted for 500 time 
steps (approximately 60 cycles) so that the solution would be reasonably close to a 
steady state (if it did indeed converge). Least squares analyses of the model results 
were then used to calculate the coefficients of the leftward and rightward waves, as 
predicted by (3.13). 

In order to determine if the coefftcients were converging, four least squares fits 
were made over the successive time step ranges [401,425], [426,450], [451,475], 
and [476, 500-J. Residuals decreased with each successive Iit, and the fitted values 
seemed to be converging. Reflection coefftcients for both the left and right boun- 
daries were then calculated from the litted p, and ,uL2 values. In all cases (except 
Orlanski), the reflection coefficient amplitudes from the fourth fit were identical to 
at least 6 decimal places with the analysis results. These results are summarized in 
Tables I and II. 

4. THE GALERKIN FINITE ELEMENT METHOD 

This section examines the accuracy of several boundary conditions for the 
Galerkin finite element method which combines piecewise linear basis functions 
with Crank-Nicolson time stepping. Although a wide variety of time-stepping 
schemes can be used with this finite element method, Crank-Nicolson time-stepping 
is chosen here because it is (generally) the most accurate linear two-step method for 
the Cauchy problem (1.1) [28]. 

Unlike the RS scheme, the discrete z; and u,” variables for FEMl are not 
staggered in either time or space. In the domain interior, the FEMl difference 
equations are 

(4.la) 

& z At[ui”T; + ui”- I + 4(q+’ +U;)+Ujn~:+U;+l]=O. (4.lb) 
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Initial conditions 

q= Sl(A (4.2a) 

zi” = g2(A (4.2b) 

are assumed for some functions g, and g,. 
Because there is no staggering of the variables, the numerical implementation of 

boundary conditions for problem Pl is straightforward. 

(4.3a) 

and 

u; = F(n) (4.3b) 

approximate the absorbing left and driving right boundaries, respectively. They are 
called physical conditions. However, since (4.la) and (4.lb) can only be applied to 
grid points j = 2, N- 1, two other conditions are required in order that the system 
of equations which determines the numerical solution at each time step has full 
rank. These conditions are normally applied at the boundaries and are called 
extraneous or computational boundary conditions. 

Extraneous boundary conditions are commonly constructed by either 
extrapolating variables from the grid interior or approximating a governing 
equation at the boundary with a one-sided difference expression. With a finite 
element scheme, the latter type arises naturally if basis functions and the Galerkin 
condition are applied at the boundary points. The particular choice of extraneous 
condition can affect both the stability and accuracy of the numerical solution. 
Gunzburger [35] has shown that hyperbolic systems can becomes unstable when 
the Galerkin method is applied at the boundary. Gottlieb, Gunzburger, and Turkel 
[36] have shown that in general extrapolation of outgoing characteristic variables 
is stable for both finite difference and semi-discrete Galerkin solutions of linear 
hyperbolic systems of equations in one dimension. In comparative studies, Chu and 
Sereny [ 11 and Sloan [7] found that characteristic extrapolations also produced 
more accurate numerical solutions. 

In this section, three types of characteristic extrapolation are compared with the 
extraneous boundary conditions that arise from applying the Box scheme to the 
governing equations. Other pairs of extraneous conditions were briefly examined 
but rejected when it was discovered that they would not produce a steady state 
solution. For example, an eigensolution with amplitude greater than 1.0 arises when 
either constant or linear spatial extrapolation is applied to z. 

The four pairs of extraneous boundary conditions are: 

(i) zeroth-order spatial extrapolation of the leftward characteristic variable 
at the left boundary and the rightward characteristic variable at the right boundary 
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g 112 -- 0 112 
= - 

h 
Z’I + u; 0 s 

h 
2; + u; (4.4a) 

112 l/2 

z”N-,+u”Np,, (4.4b) 

(ii) constant space-time extrapolation of the outgoing characteristic variables 

(4.5a) 

(4.5b) 

(iii) linear spatial extrapolation of the outgoing characteristic variables 

g 112 
-- 

0 h 
(zl - 2z; + z;) + 2.4; - 2u; + u; = 0 (4.6a) 

g 
0 

112 

ii 
(z”N-2z”N~,+z”N~~)+u”N-2u”N~I+u”N~z=o, (4.6b) 

(iv) Box scheme applied to the momentum equation at the left boundary and 
the continuity equation at the right boundary 

(u gdt ‘1+‘-u;)+(u;+‘-uu;)+- dx [(ZZ-2’l)+(z’l+‘-z;+‘)] 

+;T Llt(Z.l;+’ +u;+u;+‘+u;)=O (4.7a) 

(z 
hdt 

~+‘-z~)+(z~~~,-z~~,)+~~(u”N-u”N~L)+(u~+’-u”N+_I,)]=o. (4.7b) 

Other applications of the Box scheme were examined but found to have eigen- 
solutions with amplitude equal to 1.0. Specifically, A = 1 is an eigenvalue of A - ‘B 
when the Box scheme is applied to the continuity equation at both boundaries, and 
L = -1 is an eigenvalue when the Box scheme is applied to the momentum 
equation at both boundaries. In both instances, these eigenvalues exist for all values 
of fr, fi, and N. On the other hand, numerical computations with extraneous 
boundary conditions (4.7a), (4.7b) and selected values of fi, f2, and N consistently 
found that all eigenvalues of A ~ ‘B lay inside the unit circle. 

The boundary condition analysis for FEMl proceeds as in Section 2. Define the 
vector X as 

x = (u;, z;, u;, z; ,...) u”N, z”N). (4.8) 
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Equations (4.1), (4.3), and one of (4.4), (4.5), (4.6), or (4.7) can then be expressed 
in the form (2.1). Assuming that all the eigenvalues of A -‘B are inside the unit 
circle, the steady state numerical solution then has the separable form (2.9). In 
particular, assume 

(4.9) 

where L is given by (2.11). Equation (4.1) has nontrivial solutions of this form when 

(A- 1)2(Ic2+4K+ 1)2+trdr(~2-l)(K2+41(+ 1y 

-$gh g 2(i+1)2(K~-1)2=0. 
i 1 

(4.10) 

This characteristic equation has four roots for each value of 1. If the roots are dis- 
tinct, the numerical solution is 

(4.11) 

where the coefficients cr, ,ul are determined by the boundary conditions and (4.1). 
Provided each of the four K roots has a nonzero argument, kdx, (4.11) describes 
four travelling waves with wavenumbers -k. Two wavenumbers are positive and 
correspond to waves with phase velocity C > 0, while the other two are negative 
and correspond to waves with C< 0. 

Figure 6 illustrates the relationship between IZ=eiodr and rc= reikdx for the 
parameter values fi = 1.0 and fl = 0.0. The diagram on the left is the dispersion 
curve for waves with k Ax > 0. Equation (3.14) therefore implies C < 0. The 
analogous curve for waves with C > 0 is simply the reflection about the o At axis. 

FIG. 6. Amplitude and phase of K for f, = 0.0 and J2 = 1.0. Solid line, FEMl; dashed line, analytic 
solution. 
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Notice that o At values less than the cutoff frequency o, are associated with two 
wevenumbers. As was pointed out by Platzman [22], this suggests that the 
response to forcing will be a short wavelength noise component as well as the 
longer wavelength that is physically appropriate to the forcing frequency. The 
diagram on the right plots 1~1 as a function of the forcing frequency. When 
cu At < o, both associated K values have amplitude unity. (This is no longer true 
when t > 0.) When w At > wC, the two K values have the same wavenumbers but 
different amplitudes. If the coefficients i, and /L, indicate that the K value with the 
larger magnitude dominates, an evanescent signal emanating from the right boun- 
dary will decay as it propagates leftward. This is predicted by Vichnevetsky [32], 
and was also seen with the RS scheme. However, unlike the fixed wavenumbers 
associated with the RS and Vichnevetsky evanescent signals, these wavenumbers 
vary with w At. 

The dispersion curve in Fig. 6 shows that the shorter wave associated with 

TI3TRL SIGNRL LONG WRVES SH(3RT WRVES 

P 
0 

DBMRIN DOMRIN DBMRIN 

0 0 0 

DOMRIN OBMRIN DBMQIN 

N 

0 0 0 

OBMRIN DOMAIN DOMAIN 

FIG. 7. Steady state u values at three consecutive time steps for the FEMl solution of problem Pl 
with extraneous boundary conditions (4.4). f, = 0.0, f2 = 1.0, N = 50. The right boundary is forced with 
two sinusoidal functions of equal amplitude and frequencies w dt = 0.57334066 and o df = 0.85608400. 
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-1 SHORT WQVES 

.o 0.1 0.2 0.3 0.4 0.5 

WA?/lT 

LI3NG WFlVES 

7 i 
.o 0.1 0.2 0.3 0.4 0.5 

wAth 

FIG. 9. Wave amplitudes (for u) for the FEMl solution of problem Pl. w dr < w,, fr =O.O, .fz = 1.0, 
N= 10. Short dashed line, constant spatial extrapolation of the characteristic variables (4.4); solid line. 
constant space-time extrapolation of the characteristic variables (4.5); long-short dashed line, Box 
scheme applied to the continuity equation (4.7); long dashed line, linear spatial extrapolation of the 
characteristic variables (4.6). 

scheme. Eight equations are now required to determine the eight unknowns. Boun- 
dary conditions such as those given by (4.3) and (4.4) produce four equations. The 
discrete continuity (or momentum) equation (4.la) yields another four, since it 
must be satisfied for each of the four types of waves. In most instances, the resultant 
matrix equation is nonsingular and c,, p, can be found. However, if the matrix is 
singular, these coefficients cannot be determined. This would suggest that an 
assumption has been violated. Specifically, either not all the u values are distinct or 
not all the eigenvalues of A - ‘B are inside the unit circle. 

Figure 9 shows the short and long wave amplitudes at the left boundary for the 
four pairs of extraneous conditions when f, = 0, f2 = 1.0, and N = 10. Only values 
for o At < w, are shown. For all boundary conditions and driving frequencies, the 
matrix equations were nonsingular. Although wave amplitudes are now dependent 
on N, results with N = 10, 11, 50 suggest that this parameter does not affect the 
relative performance of the four pairs of extraneous conditions. 

Only the Box scheme conditions assigned nonzero amplitudes to the short 
leftward and long rightward waves. (In particular, the same amplitude was assigned 
to each.) For the other three extraneous conditions, the short wave amplitude 
shown in Fig. 9 refers to the rightward wave and the long wave amplitude refers to 
the leftward wave. Since the left boundary is radiating and the amplitude of the 
forced wave is 1.0, ideal boundary conditions should assign all this energy to the 
longer leftward wave. Clearly these conditions are not ideal. For small o At, short 
wave amplitudes are close to zero and the amplitudes of the long leftward wave are 
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close to 1. However, as o At increases, so do the amplitudes of the short wave(s). 
For example, when w At = 0.2425x, amplitudes of the short and long waves arising 
from (4.4) are 0.396 and 1.004, respectively. 

Notice that for all four pairs of boundary conditions, both amplitude patterns 
oscillate as o At increases. Sharp peaks are an exaggeration of this phenomenon. 
They occur when eiodt is very close to an eigenvalue of the matrix A - ‘B (as defined 
in Section 2). For example, with the Box scheme conditions two eigenvalues of 
A -‘B are ,I = 0.999972ei.s59166 and ,I = 0.994212e”.26839. Consequently, the forcing 
terms 1 = ei.559166 and 1 = ei1.26839 are almost eigenvalues. Were they eigenvalues, a 
separable steady state solution could not be assumed and the foregoing analysis 
could not be applied. 

Though it is not shown in Fig. 9, all four numerical waves have the same length 
when w At > w,. Phase and group velocities for each wave also have the same sign. 
At the right boundary, virtually all the leftward energy is assigned to the wave 
associated with IIC( > 1. This is further confirmation that the forced oscillation has a 
spatial decay of the type discussed by Vichnevetsky 1321. 

Figure 9 shows that constant space-time extrapolation of the characteristic 
variables is the most accurate pair of extraneous conditions. For most driving fre- 
quencies, its short wave amplitudes are closer to zero and its long leftward wave 
amplitudes are closer to one. This scheme also seems to exhibit less oscillation in 
the amplitude profiles. 

The implementation of physical boundary conditions for problem P2 is also 
straightforward. A closed left boundary and a driving/radiating right boundary are 
respectively represented as 

24; = 0 (4.12a) 

112 
2; + 2F(n). (4.12b) 

The driving/radiation condition is derived by assuming that the leftward and 
rightward wave components at the right boundary are related as 

112 
2; = F(n) 

and 

(4.13a) 

(4.13b) 

Extraneous boundary conditions (4.4), (4.5), and (.46) were implemented for P2 
as they were with Pl, but the Box scheme application was reversed. This ensured 
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SHORT LEFTWFIRD WFIVE e,LONG LEFTWFlRD WFlVE 

0.5 

FIG. 10. Wave amplitudes (for u) for the FEMl solution of problem P2. Parameter values and 
notation as in Fig. 9. 

that the momentum equation remained coupled with the radiation condition, and 
the continuity equation remained with the boundary condition that is closed with 
respect to outward waves. Figure 10 shows the relative accuracy of the extraneous 
conditions for the same parameter values as in Fig. 9. Except for the Box scheme, 
amplitudes of the long leftward and short rightward waves are the same as those 
with Pl. With the Box scheme, the two long waves have the same amplitude and 
the two short waves have the same amplitude. For the other three sets of 
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extraneous conditions, the amplitude ratio of the long rightward wave to the long 
leftward wave is the same as the amplitude ratio of the short leftward wave to the 
short rightward wave. However, each ratio varies with w At. 

Constant space-time extrapolation of the characteristic variables is again most 
accurate. Its short wave amplitudes are generally smaller and its long wave 
amplitudes are generally closer to the driving amplitude 1.0. Listed in terms of 
decreasing accuracy, the next best extraneous conditions are the Box scheme, linear 
spatial extrapolation of the characteristic variables, and constant spatial 
extrapolation of the characteristic variables. 

The preceding analysis results were partially confirmed with numerical tests 
similar to those for the RS scheme. Both problems Pl and P2 were tested with all 
four pairs of extraneous boundary conditions and the parameter values fi = 0.0, 
fi = 1.0, and N= 10. All computations were done in double precision and again, 
only one driving frequency, w At = 0.70685835, was tested. Each test was run for 
1000 time steps. Least squares analyses over the successive time steps ranges 
[801,850], [851,900], [901,950], and [951, lOOO] were used to calculate the c1 
and ~1, coefficients of (4.11). In all cases, residuals decreased with each successive lit, 
and the fitted coellicients seemed to be converging. However, convergence was 
much slower than with the RS scheme because in several tests (with the Box scheme 
conditions) eigenvalues of A -‘B which lay just inside the unit circle caused the 
transient solutions to decay more slowly. 

Tables III and IV compare the numerical and analysis results. In all cases, the ,u[ 
coefficient amplitudes obtained in the fourth lit were identical to at least 3 decimal 
places with those predicted by the analysis. Were the models run longer, agreement 
would be closer. 

5. AN EXAMPLE OF TREFETHEN'S INSTABILITY 

Most stability theory for finite difference models of hyperbolic initial boundary 
value problems is based on the classic yet complex paper by Gustafsson, Kreiss, 
and Sundstrom [3]. Their normal mode analysis for stability involves substitutions 
similar to those in the previous analyses, and checks for nontrivial solutions 
associated with eigenvalues whose magnitudes are not less than unity. Trefethen 
[2, lo] has recently shown that the GKS perturbation test for unstable 
“generalized eigensolutions” has a physical interpretation in terms of group velocity. 
In particular, he shows that GKS instability amounts to spontaneous radiation of 
energy from the boundary into the problem domain. His main result is a necessary 
condition for stability which involves checking the signs of the group velocities 
corresponding to eigenvalue solutions with modulus unity. 

FEMl can have an instability of this type. Reexpressing (1.1) in terms of charac- 
teristic variables and assuming r = 0, the FEMl equations for the leftward charac- 
teristic variable become 
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~C(w~t:-w~~I)+4(w,~+1-w~)+(w~~~-w~+1)] 

= $(gh)‘“(At~Ax)[wj”+ * -WY- I + w,“=I’ -w;‘;]. (5.1) 

Assuming the separable solution 

w; = a0 A”rcj, (5.2) 

the characteristic equation for (5.1) is 

(A- l)(l +4Jc+K-2)-3f2(L+ l)(Ic2- l)=O. (5.3) 

For each 1, there are two values of JC, namely, K, and Q. The general numerical 
solution therefore has the form 

WY = A”(a, ic: + a*& (5.4) 

Consider the pair of boundary conditions 

w”,+w”,-,=o (5.5a) 

WY = w;. (5.5b) 

The former condition is consistent with the well-posed [27] analytical condition 
w = 0, while the latter is a form of constant spatial extrapolation. Assuming the 
general solution (5.4), (55a) implies 

Cl,$-l(l +K,)+tl*i+I(l +icz)=O. (56a) 

while (5.5b) implies 

a, K,(K: - 1) + 0/2K2(K; - 1) = 0. (5.6b) 

Consider the particular solution I = 1, rcr = 1, ICY = - 1. Then (5.6b) is satisfied for 
all CI, and az, whereas (5.6a) requires a, =O. The 2Ax wave 

w~=az(-l)j (5.7) 

is therefore a nontrivial solution to (5.1) and (5.5). If its group velocity is positive, 
Trefethen’s interpretation of GKS theory would imply an instability at the left 
boundary. 

The group velocity is found by assuming the travelling wave solution 

wr,2 = aoei(jkdx+nodf) 
I 

for (5.1). The resultant dispersion relationship is 

(5.8) 

(5.9) 
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and group velocities are calculated using (3.14b). The group velocity for 2dx waves 
(i.e., kdx= &II) is 3(gh) , i” Consequently, at the left boundary, energy from a 2dx 
wave radiates into the problem domain. Since this energy does not arise from the 
reflection of a wave with negative group velocity (rather it radiates spontaneously), 
Trefethen’s theory predicts instability. 

With N = 10, 20, 40, 80 and fi = 1.0, it can be shown numerically that no other 
eigensolutions or generalized eigensolutions (nontrivial solutions with (A(> 1) are 
supported by boundary conditions (5.5). Instability therefore arises solely from the 
generalized eigensolution (5.7). This (mild) instability was confirmed with a test 
model which assumed random initial conditions and no forcing. As in Gustafsson 
[25], the accumulation of rounding errors was accelerated by adding a small ran- 
dom number to each wj at each time step. 

6. SUMMARY AND CONCLUSIONS 

The preceding analysis has demonstrated a valid approach for evaluating the 
relative accuracy of numerical boundary conditions. Although only two numerical 
methods for solving the one-dimensional shallow water equations were examined, 
the concepts are sufficiently general that they could be applied to other methods 
and other one-dimensional forced hyperbolic equations. In fact, the analysis should 
also be extendable to two-dimensional forced equations where angles of incidence 
to the boundary will be another factor affecting accuracy [13]. 

Although the preceding analyses were more illustrative than comprehensive, 
some conclusions can be drawn from the results. With the RS scheme, boundary 
condition accuracy was seen to be independent of N and the boundary condition at 
the other end of the channel. When r = 0, both radiating and driving/radiating 
boundaries became more accurate as higher orders of space-time extrapolation were 
applied to the outgoing characteristic variables. Accuracy was highest with long 
waves and deteriorated as the wavenumber increased. However, the same was not 
true when a r > 0 meant that t and u were no longer in phase. Boundary conditions 
ceased to be most accurate for long waves and higher orders of space-time 
extrapolation did not necessarily produce greater accuracy. This may not be true 
for variations of (1.3) that include friction (e.g., [33]), or numerical implemen- 
tations based on other mathematical expressions of the radiation condition. 

The FEMl analysis illustrated some of the short wave problems that can arise 
with a Galerkin finite element method which uses piecewise linear basis functions. 
Similar difficulties can be expected for any numerical scheme whose dispersion 
curve is not monotonic. Short waves were seen to be generated not only with 
forced and closed boundaries, but also with radiating boundaries. Short wave 
contamination was also seen to vary with the choice of extraneous boundary 
conditions. 

The FEMI analysis indicated that extraneous boundary conditions which are 
constructed using constant space-time extrapolation of the outgoing characteristic 
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variables are more accurate than those constructed from the Box scheme, or from 
constant or linear spatial extrapolation of the characteristic variables. All four con- 
ditions seemed to perform equally well (or poorly) in representing the boundary 
physics and minimizing the generation of short waves. And although boundary 
condition accuracy did depend on N, the overall relative accuracy of the four 
conditions did not seem to be affected by changes in this parameter. 
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